Machine learning with hard constraints: Neural Differential-Algebraic Equations (DAEs) as a general formalism


We recently released a new manuscript Semi-Explicit Neural DAEs: Learning Long-Horizon Dynamical Systems with Algebraic Constraints where we showed a way to develop neural networks where any arbitrary constraint function can be directly imposed throughout the evolution equation to near floating point accuracy. However, in true academic form it focuses directly on getting to the point about the architecture, but here I want to elaborate about the mathematical structures that surround the object, particularly the differential-algebraic equation (DAE), how its various formulations lead to the various architectures (such as stabilized neural ODEs), and elaborate on the other related architectures which haven’t had a paper yet but how you’d do it (and in what circumstances they would make sense).

READ MORE

A Hands on Introduction to Applied Scientific Machine Learning / Physics-Informed Learning


Presented at JuliaEO25

This is a hands-on introduction to Scientific Machine Learning that does not assume a background in machine learning. We start scratch, showing the mathematical basis of “what is a neural network?” all the way up through adding physical intuition to the neural network and using it solve problem in epidemic outbreaks to improving sensor tracking of Formula 1 cars.

DDPS Seminar Talk: Generalizing Scientific Machine Learning and Differentiable Simulation Beyond Continuous models


I’m pleased to share a talk I gave in the DDPS seminar series!

Data-driven Physical Simulations (DDPS) Seminar Series

Abstract: The combination of scientific models into deep learning structures, commonly referred to as scientific machine learning (SciML), has made great strides in the last few years in incorporating models such as ODEs and PDEs into deep learning through differentiable simulation. However, the vast space of scientific simulation also includes models like jump diffusions, agent-based models, and more. Is SciML constrained to the simple continuous cases or is there a way to generalize to more advanced model forms? This talk will dive into the mathematical aspects of generalizing differentiable simulation to discuss cases like chaotic simulations, differentiating stochastic simulations like particle filters and agent-based models, and solving … READ MORE

Accurate and Efficient Physics-Informed Learning Through Differentiable Simulation (ASA Seminar Talk)


July 14 2022 in Uncategorized | Tags: | Author: Christopher Rackauckas

Abstract: Scientific machine learning (SciML) methods allow for the automatic discovery of mechanistic models by infusing neural network training into the simulation process. In this talk we will start by showcasing some of the ways that SciML is being used, from discovery of extrapolatory epidemic models to nonlinear mixed effects models in pharmacology. From there, we will discuss some of the increasingly advanced computational techniques behind the training process, focusing on the numerical issues involved in handling differentiation of highly stiff and chaotic systems. The viewers will leave with an understanding of how compiler techniques are being infused into the simulation stack to increasingly automate the process of developing mechanistic models

Bio: Dr. Chris Rackauckas is the Director of Scientific Research at Pumas-AI, the Director of … READ MORE

Keynote: New Horizons in Modeling and Simulation with Julia (Modelica Conference 2021)


June 25 2022 in Uncategorized | Tags: | Author: Christopher Rackauckas

Keynote Address: New Horizons in Modeling and Simulation in Julia

Presenters: Viral Shah (Julia Computing, CEO and Co-Founder), Chris Rackauckas (Julia Computing, Director of Modeling and Simulation and Christopher Laughman (Mitsubishi Electric Research Laboratories, Principal Member Research Staff)

Abstract: As modeling has become more ubiquitous, our models keep growing. The time to build models, verify their behavior, and simulate them is increasing exponentially as we seek more precise predictions. How will our tools change to accommodate the future? Julia’s language design has led to new opportunities. The combination of multiple dispatch, staged compilation, and Julia’s composable libraries have made it possible to build a next generation symbolic-numeric framework. Julia’s abstract interpretation framework enables capabilities such as automatic differentiation, automatic surrogate generation, symbolic tracing, uncertainty propagation, and automatic … READ MORE

Improved ForwardDiff.jl Stacktraces With Package Tags


December 19 2021 in Uncategorized | Tags: | Author: Christopher Rackauckas

You may have seen some hilariously long stacktraces when using ForwardDiff. In the latest releases of OrdinaryDiffEq.jl we have fixed this, and the fix is rather safe. I want to take a second to describe some of the technical details so that others can copy this technique.

The reason for this is the tag parameter. The Dual number type is given by Dual{T,V,N} where V is an element type (usually Float64), N is a chunksize (some integer), and T is the tag. What the tag does is prevent perturbation confusion by erroring if two incompatible dual numbers try to interact. The key requirement for it to prevent perturbation confusion is for the type to be unique in the context of the user. For example, if the user is differentiating f, and then differentiating x->derivative(f,x), you want the tag to be … READ MORE

The Use and Practice of Scientific Machine Learning


November 18 2021 in Uncategorized | Tags: | Author: Christopher Rackauckas

The Use and Practice of Scientific Machine Learning

Scientific machine learning (SciML) methods allow for the automatic discovery of mechanistic models by infusing neural network training into the simulation process. In this talk we will start by showcasing some of the ways that SciML is being used, from discovery of extrapolatory epidemic models to nonlinear mixed effects models in pharmacology. From there, we will discuss some of the increasingly advanced computational techniques behind the training process, focusing on the numerical issues involved in handling differentiation of highly stiff and chaotic systems. The viewers will leave with an understanding of how compiler techniques are being infused into the simulation stack to increasingly automate the process of developing mechanistic models.

Benchmarks behind this talk can be found at READ MORE

When does the mean and variance define an SDE?


November 1 2021 in Uncategorized | Tags: | Author: Christopher Rackauckas

I recently saw a paper that made the following statement:

“Innes et al. [22] trained neural SDEs by backpropagating through the operations of the solver, however their training objective simply matched the first two moments of the training data, implying that it could not consistently estimate diffusion functions.”

However, given that the statement “could not consistently estimate diffusion functions” had no reference to it and no proof in the appendix, I was interested to figure out the mathematical foundation behind the claim. Furthermore, I know from the DiffEqFlux documentation example that there was at least one case where second order method of moments seems to estimate the diffusion function. So a question arose, when does the mean and variance define an SDE?

Of course, in 2021 a Twitter thread captures the full discussion. But I want to take a step back … READ MORE

GPU-Accelerated ODE Solving in R with Julia, the Language of Libraries


R is a widely used language for data science, but due to performance most of its underlying library are written in C, C++, or Fortran. Julia is a relative newcomer to the field which has busted out since its 1.0 to become one of the top 20 most used languages due to its high performance libraries for scientific computing and machine learning. Julia’s value proposition has been its high performance in high level language, known as solving the two language problem, which has allowed allowed the language to build a robust, mature, and expansive package ecosystem. While this has been a major strength for package developers, the fact remains that there are still large and robust communities in other high level languages like R and Python. Instead of spawning distracting language wars, we should ask the … READ MORE

Universal Differential Equations for Scientific Machine Learning (Video)


Colloquium with Chris Rackauckas
Department of Mathematics
Massachusetts Institute of Technology

“Universal Differential Equations for Scientific Machine Learning”

Feb 19, 2020, 3:30 p.m., 499 DSL
https://arxiv.org/abs/2001.04385

Abstract:
In the context of science, the well-known adage “a picture is worth a thousand words” might well be “a model is worth a thousand datasets.” Scientific models, such as Newtonian physics or biological gene regulatory networks, are human-driven simplifications of complex phenomena that serve as surrogates for the countless experiments that validated the models. Recently, machine learning has been able to overcome the inaccuracies of approximate modeling by directly learning the entire set of nonlinear interactions from data. However, without any predetermined structure from the scientific basis behind the problem, machine learning approaches are flexible but data-expensive, requiring large databases of homogeneous labeled training data. … READ MORE