6 Months of DifferentialEquations.jl: Where We Are and Where We Are Going


So around 6 months ago, DifferentialEquations.jl was first registered. It was at first made to be a library which can solve "some" types of differential equations, and that "some" didn't even include ordinary differential equations. The focus was mostly fast algorithms for stochastic differential equations and partial differential equations.

Needless to say, Julia makes you too productive. Ambitions grew. By the first release announcement, much had already changed. Not only were there ordinary differential equation solvers, there were many. But the key difference was a change in focus. Instead of just looking to give a production-quality library of fast methods, a major goal of DifferentialEquations.jl became to unify the various existing packages of Julia to give one user-friendly interface.

Since that release announcement, we have made enormous progress. At this point, I believe we have both the most expansive and flexible ... READ MORE

Introducing DifferentialEquations.jl


Edit: This post is very old. See this post for more up-to-date information.

Differential equations are ubiquitous throughout mathematics and the sciences. In fact, I myself have studied various forms of differential equations stemming from fields including biology, chemistry, economics, and climatology. What was interesting is that, although many different people are using differential equations for many different things, pretty much everyone wants the same thing: to quickly solve differential equations in their various forms, and make some pretty plots to describe what happened.

The goal of DifferentialEquations.jl is to do exactly that: to make it easy solve differential equations with the latest and greatest algorithms, and put out a pretty plot. The core idea behind DifferentialEquations.jl is that, while it is easy to describe a differential equation, they have such diverse behavior that experts have spent over a century compiling ... READ MORE

Using Julia's Type System For Hidden Performance Gains


What I want to share today is how you can use Julia's type system to hide performance gains in your code. What I mean is this: in many cases you may find out that the optimal way to do some calculation is not a "clean" solution. What do you do? What I want to do is show how you can define special arrays which are wrappers such that these special "speedups" are performed in the background, while having not having to keep all of that muck in your main algorithms. This is easiest to show by example.

The examples I will be building towards are useful for solving ODEs and SDEs. Indeed, these tricks have all been implemented as part of DifferentialEquations.jl and so these examples come from a real use case! They really highlight a main feature of Julia: ... READ MORE